Как найти катет прямоугольного треугольника

19.12.2019
Как найти катет прямоугольного треугольника

С задачками по геометрии сталкиваются все в средней школе. Кому-то такие задачки даются сложно, а кто-то их щелкает, как орешки. На самом деле эти задачи не особо сложные, просто нужно вникнуть и понять определенный алгоритм решения. Давайте подробнее разберем, как найти катет прямоугольного треугольника.

Как найти катет прямоугольного треугольника

Геометрические определения

  • Если у треугольника есть прямой угол (∠=90о), то он является прямоугольным.
  • Катет – линия, создающая угол 90 градусов в треугольнике.
  • Гипотенуза – линия, которая находится напротив угла равного 90 градусов.
  • Две ортогональные линии образуют прямой угол, величина которого 90 градусов. Еще можно сказать, что это половина развернутого угла.

Свойства сторон в прямоугольном треугольнике

Гипотенуза всегда больше каждого из катетов.

BC>AC; BC>AB

Сторона, которая находится напротив угла равного 30 градусов, равна половине величины гипотенузы.

К прямоугольному треугольнику можно применить теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

AC2+AB2=BC2

Формулы для решения задач

  • Если мы знаем величину одного катета А и гипотенузы С, то второй катет B мы вычислим при помощи теоремы Пифагора.
  • Угол А мы может определись с помощью формулы синуса:

Как найти катет прямоугольного треугольника

  • Так как сумма всех углов геометрической фигуры всегда равна 180 градусов, то другой острый угол можно вычислить по формуле:

В=180о-90о

Примеры решения задач

Задача №1:

Как найти катет прямоугольного треугольника

В треугольнике АВС с ∠А=90 градусов, ∠С=60 градусов и катетом АВ=5 см. Найти длину катета АС.

Решение:

В прямоугольном треугольнике АВС найдем угол В:

∠В=90о — ∠С=90о — 60о = 30о

Поскольку ∠В=30 о, то катет АВ равен половине гипотенузы ВС, а значит,

ВС=2АВ=10 см

Длину катета АС найдем с помощью теоремы Пифагора:

Как найти катет прямоугольного треугольника

Задача №2:

Как найти катет прямоугольного треугольника

В равнобедренном и прямоугольном треугольнике АВС гипотенуза больше катета на 2 см. Найти длину сторон треугольника.

Решение:

В треугольной фигуре АВС обозначим катеты АВ=АС=х, тогда ВС=2+х. Запишем теорему Пифагора для данного треугольника:

ВС2= АВ2 + АС2 => (х+2)2 = х2 + х2 или х2 – 4х – 4 = 0

Решая это уравнение и учитывая условия задачи, получим

х= (2+2) см

т.е. АВ = АС = (2+2) см, ВС = (4+2) см

Ответ: АВ = АС = (2+2) см, ВС = (4+2) см

Как видите, процесс решения геометрических задач по нахождению катета в прямоугольном треугольнике не особо сложный. Нужно просто приложить усилия, посидеть и вникнуть в суть задачи. Когда начнете писать формулы, решение придет к вам само. Удачи в решении задачек по геометрии, теперь вы знаете, как найти катет прямоугольного треугольника.

Видео по теме


Подпишитесь на наши интересные статьи в соцетях!
Или подпишитесь на рассылку

Сохрани статью себе в соцсеть!

Автор публикации
не в сети 2 месяца
Комментарии: 0Публикации: 50

Оставить ответ

Вам будет интересно также: